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Abstract 

Characteristic dynamical diffraction effects on high- 
resolution electron microscopy of perfectly and 
imperfectly ordered alloys are discussed using the 
multislice dynamical scattering theory. In contrast 
with short-range-ordered alloys, the scattering ampli- 
tude of the superlattice reflections of long-range- 
ordered alloys can be represented by a multiplication 
of the kinematical structure factor and the dynamical 
factor. It is shown that the dynamical factor does not 
depend on the ordered atomic arrangements, so the 
dynamical diffraction effect on the scattering ampli- 
tude of the superlattice reflections and also on the 
high-resolution superstructure images can be esti- 
mated through the dynamical factor as far as the alloy 
composition and the basic structure are known. The 
dynamical factor for Cu3Pd is calculated as a function 
of crystal thickness and reciprocal-lattice vector. 

1. Introduction 

High-resolution electron microscopy (HREM) is a 
powerful technique for investigating structural 
defects in various materials (Spence, 1981; Fujita & 
Hirabayashi, 1986). In a series of high-voltage high- 
resolution electron microscopy (HVHREM) studies 
of alloys, several new long-period antiphase struc- 
tures (Hiraga, Shindo, Hirabayashi, Terasaki & 
Watanabe, 1980; Terasaki, Mikata, Watanabe, 
Hiraga, Shindo & Hirabayashi, 1982) and related 
structural defects (Hiraga, Hirabayashi, Terasaki & 
Watanabe, 1982) have been revealed. The success of 
HVHREM in structural analyses of these alloys has 
been based on the one-to-one correspondence 
between the observed images and the projected 
ordered atomic arrangements. For example, in A3B- 
or A4B-type ordered alloys having the basic f.c.c. 
structure, B atom columns appear as white or black 
dots in the high-resolution images. It was thus poss- 
ible to interpret directly the ordered atomic arrange- 
ment of the B atom sites in the f.c.c, structure. This 
one-to-one correspondence between the images and 
the ordered atomic arrangements has been explained 
theoretically on the basis of the dynamical diffraction 
theory in the real-space representation (Van Dyck, 
Van Tendeloo & Amelinckx, 1982) and also in terms 
of the kinematical relationship among the superlattice 
reflections in reciprocal space (Shindo, 1982). 
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Furthermore, in HVHREM studies of alloys having 
partially disordered atomic arrangements, it was 
shown that the high-resolution images can show the 
projected atomic arrangement in the alloys under well 
defined conditions (Shindo, Hiraga & Hirabayashi, 
1984). Even in a more random state, very small micro- 
domains of ordered structures were detected (Van 
Tendeloo & Amelinckx, 1985; Lee, Hiraga, Shindo 
& Hirabayashi, 1988). On the other hand, in 
HVHREM of perfectly ordered alloys based on the 
h.c.p, structure, strong dynamical diffraction effects 
were observed, and the image contrast was very sensi- 
tive to changes in crystal thickness (Shindo, Hiraga, 
Hirabayashi, Terasaki & Watanabe, 1983). 

In this work, we systematically discuss the dynami- 
cal diffraction effects in imperfectly ordered as well 
as perfectly ordered alloys using the multislice 
dynamical theory (Cowley & Moodie, 1957; Cowley, 
1981). An additional factor is introduced to represent 
the dynamical diffraction effect on the scattering 
amplitude. High-resolution images and the diffraction 
intensities are discussed in terms of the dynamical 
factor which is evaluated for CuaPd. 

2. General formulation of dynamical electron 
scattering in ordered alloys 

In the following, we are mainly concerned with the 
scattering amplitude of superlattice reflections. This 
is because the high-resolution images which reflect 
the ordered atomic arrangements of alloys, called 
superstructure images, are, in general, directly pro- 
duced by the superlattice reflections situated between 
the transmitted beam and the fundamental reflections 
(Fig. 1). 

In order to evaluate the intensity distributions in 
both high-resolution images and electron diffraction 
patterns of ordered alloys including imperfectly 
ordered states, we consider dynamical electron 
diffraction based on the periodic continuation 
approximation for the structure whose unit cell is 
bounded by the artificial boundary shown in Fig. 2. 
The effect of this artificial boundary on the scattering 
amplitude can be neglected if the length of the unit 
cell, l, is large compared with the width of the boun- 
dary, Al. With this artificial unit cell, the geometrically 
defined structure factor for the superlattice reflection 
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Fig. 1. Electron diffraction pattern of Cu-27 at.%Pd with a one- 
dimensional long-period superstructure, and the transfer func- 
tion for a 1 MV electron microscope with Cs = 11 mm at the 
Scherzer condition. The passband of the transfer function is 
indicated by the concentric circles. 
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Fig. 2. Artificial unit cell assumed in the periodic continuation 
approximation for discussing dynamical electron diffraction in 
imperfectly ordered alloys. 

uj is given as 

G(uj) = ~ y, exp(-2~iujri),  (1) 
i 

where )'i is the occupation parameter 

= ~ ms for A atom at ri 

Yi [--ma for B atom at r~' (2) 

mA and ms = ( 1 -  ma) being the atomic fractions of 
A and B, respectively. In considering the intensity 
distribution of high-resolution images, it is not 
necessary to set up such a large artificial unit cell, 
and we can use the column approximation instead. 

According to the multislice theory (Cowley & 
Moodie, 1957; Cowley, 1981), the transmission func- 
tion for superlattice reflections of the nth crystal slice 
is given by assuming the weak-phase-object approxi- 
mation,* 

Q~,(u) = ~ F(u)G, , (u )6 (u-u j ) ,  (3) 
J 

where ~j indicates a sum taken over all the superlat- 
tice reflections and 

F(u) = i trAzT(u)[fa(u)-fB(u)],  (4) 

G,,(u) = Z %,, exp (-27riur~). (5) 
i 

In the above equations, or, Az and T(u) are respec- 
tively the interaction constant, one crystal slice thick- 
ness and the temperature factor which we assumed 
to be isotropic. Az is usually taken to be equal to the 
unit-cell length of a basic structure, i.e. 3-4 A. fA, fB 
are the scattering factors of constituent atoms A and 
B. G,,(u) is the geometrically defined structure factor 
for the nth crystal slice. 

As previously adopted for perfectly ordered struc- 
tures (Shindo, 1982), we assume two conditions for 
discussing dynamical diffraction effects in alloys, 
including imperfectly ordered ones: 

[Q/(H)[  > [Q~(h)[ (6) 

G ( h ) = G ( H + h ) ,  (7) 

where the one-dimensional representation is used for 
simplicity and H and h indicate the indices of funda- 
mental and superlattice reflections, respectively. 
Since the structure factor of the fundamental reflec- 
tion is assumed to be much larger than that of the 
superlattice reflection, we can neglect the scattering 
process from superlattice reflections into other super- 
lattice reflections with the scattering vector corre- 
sponding to superlattice reflections. The condition 
(7) can be satisfied for ordered alloys based on the 
f.c.c, and b.c.c, structures. The general scattering 
amplitude of  the superlattice reflection at a crystal 

* In the case of alloys composed of heavy elements, a higher- 
order approximation should be applied, as shown later. 
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thickness nAz is 

g t " . ( H + h ) = ~ .  
ht 

x 

+ 

given as 

~ f _ ~ ( H + h - h l )  

where 

P ( H + h - h l ) Q ~ ( h ~ )  

s + ~'. ~ , - l ( H  h - H 1 )  
H1 

x P ( H  + h -  H~)QY(HI) 

= O , , ( h ) S , _ l + G , , _ l ( h )  Y'. S._2R~ 
Hi 

+ . . .  + Gl+l(h) 

x ~. ~. . . .  ~. S,R,_,_~ . . .  R2RI 
H I H2 Hn- I - I  

÷ . . .  

+ G~( h ) ~. ~, . . . ~. SoR,_~ . . . R2R~, 
H t H2 H , ,  _ I 

(8) 

S,= E ~ { ( H + h - H , - H 2 - . . . - H m - h , , _ , )  
h. _ ! 

x P ( H  + h - H1 - H2 - - . . . - -  H., - h._l)F(h,,_l) 

(9) 
and 

R,, = P ( H  + h - H , -  H 2 - . .  . -  H , , ) Q f ( H , , ) .  

(10) 

In the above equations, P indicates the propagation 
function. 

The product of St and Gt+l corresponds to the 
scattering from the fundamental reflection into the 
superlattice reflection H + h, and the multiplication 
of Rm indicates the scattering from the superlattice 
reflections with the scattering vector corresponding 
to fundamental reflections. 
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! 
t 
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Fig. 3. Schematic illustration showing the dynamical scattering 
process represented in equation (11). See text for details. Full 
and open circles indicate fundamental and superlattice reflec- 
tions, respectively. Arrows shown by solid and dotted lines show 
the scattering vectors corresponding to the fundamental and 
superlattice reflections, respectively. 

As shown schematically in Fig. 3, the (n - / ) t h  term 
in the right-hand side of (8), 

GI+I(h) E E . . .  E S , R , , _ , _ , . . . R 2 R ,  (11)  
HI H2 H n - I - I  

can be interpreted as the scattering amplitude of the 
superlattice reflection ( H +  h) at the nth slice which 
is produced from the fundamental reflections at the 
( l+  1)th slice and undergoes dynamical interactions 
with the scattering vectors corresponding to the 
fundamental reflections below the ( l+  1)th slice. The 
intensities of superlattice reflections and the contrast 
in high-resolution images are discussed below for 
different ordered states. 

3. Dynamical factor for perfectly ordered alloys 

As previously shown (Shindo, 1982), if the alloy is 
perfectly ordered, all the slices may have the same 
geometrical structure factor, i.e. 

G l ( h ) = G k ( h )  k = 2 , . . . , n ,  (12) 

then (8) is written in the simple form 

v F ~ ( H + h ) = G I ( h ) E , , ( H + h ) ,  (13) 

where 

E , , ( n + h )  

=Y. ~ f _ ~ ( n + h - h l ) P ( n + h - h l ) F ( h l )  
ht 

+ E E , , _ , ( H + h - H , )  
H1 

x P ( H + h - H 1 ) O f ( H 1 )  for n > l ,  

E . ( U + h )  

= F ( H + h )  for n = l .  (14) 

In order to evaluate quantitatively the dynamical 
diffraction effect on the scattering amplitude of the 
superlattice reflections, we rewrite (13), comparing it 
to the kinematical expression (3) as 

g t ~ ( n + h ) = G l ( h ) F ( H + h ) D , ( H + h ) ,  (15) 

where 

D , , ( H + h ) = [ F ( H + h ) ] - ~ E , ( H + h ) .  (16) 

This shows that the scattering amplitude is simply 
given as a product of the kinematical structure factor 
and a 'dynamical factor'* D , , ( H + h ) ,  which is 
dimensionless and represents the dynamical scatter- 
ing effect on the scattering amplitude. 

It should be noted that the dynamical factor 
does not depend directly on the ordered atomic 

*'Dynamical factor' was introduced here for the scattering 
amplitude of superlattice reflections. The term called 'dynamical 
modulation' or 'dynamical factor' which has been used for describ- 
ing the dynamical diffraction effect on diffuse scattering intensity 
(Fisher, 1965; Cowley & Pogany, 1968) will be mentioned in § 4.3. 
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arrangement, i.e. G~(h). Hence we can estimate the 
dynamical diffraction effect from knowledge of alloy 
composition. As an example, D,(h) for the long- 
period superstructure of Cu3Pd which has been 
studied extensively by HREM (Broddin, Van Ten- 
deloo, Van Landuyt, Amelinckx, Portier, Guymont 
& Loiseau, 1986; Takeda, Kulik, de Fontaine & 
Tanner, 1986) will be evaluated later. The intensity 
of superlattice reflections can be directly given 
from (15), viz 

I~L(H + h)12=lG,(h)F(n + h)121Dn(n + h)l 2. 
(17) 

The contrast of high-resolution images can also be 
represented as 

l (x)  = I~[ ~/',(0) + g'L(h)]l 2 

=lC+i~;[G,(h)F(h)]* ~[D, (h ) ] l  2 

(C = constant), (18) 

where * indicates the convolution operation. In (18), 
perfect spatial and temporal coherence is assumed 
for the superlattice reflections situated between the 
transmitted beam and the fundamental reflections 
(Fig. 1). The contrast of the high-resolution image 
for a simple case, 

D, (h) = constant, (19) 

was discussed previously (Shindo, 1982). It was 
concluded that two types of interpretable images 
could be obtained depending on the relative ampli- 
tudes and phases of the transmitted beam and the 
superlattice reflections around it. The contrast of the 
first is represented directly by the potential difference 
of constituent atoms, i.e. +¢s(x), where the sign was 
determined by the relative phase of the superlattice 
reflections and the transmitted beam. The contrast of 
the other is proportional to the square of the potential 
difference, i.e. 

Ic~s(x)l 2 (c = constant). (20) 

This is obtained when the transmitted beam is 
absolutely extinct at some crystal thickness. In both 
cases, we can directly correlate the contrast of high- 
resolution images with the ordered atomic arrange- 
ment. The above argument revealed that the potential 
difference Cs(x) which is reflected in the image 
intensity should generally be modulated by convolu- 
tion with the Fourier transform of the dynamical 
factor, ~ [  D(h)].  

4. Dynamical factor for imperfectly ordered alloys 

Following the above discussion, we will extend the 
dynamical scattering equation to imperfectly ordered 
alloys, in which the correlation of atomic arrange- 
ments extends to some limited range. We will discuss 

the dynamical electron diffraction effects for three 
different ordered states, homogeneous partial order, 
heterogeneous partial order and short-range order. 

4.1. Homogeneous partial order 
In a partially ordered structure, the long-range- 

order parameter is less than unity. When the disorder- 
ing occurs homogeneously, the crystal may be divided 
into slices where each slice has the same crystal poten- 
tial qJ(x) projected along the incident electron beam. 
If there is a microscopic inhomogeneity due to the 
disordering, the slice is taken to be thicker than that 
of the unit-cell length of the basic f.c.c, or b.c.c. 
structure, and qJ(x) should be written as a summation 
of the projected potentials q~j(x) over m (m > 1) slices 
whose thickness corresponds to the basic structure, 
i.e. 

~p(x)= ~ ~j(x). (21) 
j=l 

Since this projected potential may not be small 
enough to apply the weak-phase-object approxima- 
tion for the transmission function, we have to use the 
approximation of higher order, 

{[ - ]} exp[ io '~(x) ]=exp  io m~o(x)+ ~ A~oj(x) 
j=l 

= exp [io'mq~(x)] 

×[l+io" ~ A~j(x)+...] 
j=l 

"- exp [iom¢(x)] 

+exp[itrm~(x)]io ~. A¢j(x). (22) 
j=l 

Fourier transformations of the first and the second 
terms on the right-hand side of (22) give the trans- 
mission function for the fundamental and the super- 
lattice reflections, respectively. Thus the transmission 
function for the second term may be written in 
reciprocal space as 

=Qm(H+h)* itr ~ J;[A¢j(x)] 
j=l 

= ~  Q m ( H + h - h l )  F(hI)  ~ aj(hl) 
ht j=l 

(23) 

Replacing G(h) in (3) by Y-~"=I Gj(h) and F(h) 
by ~h, Qm(H+h-hl)F(h,), we can define the 
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dynamical factor as 

] D , ( H + h ) =  O, , (H+h-ho)F(ho)  

x [ ~  g'{_,(H+h-h,)e(H+h-h~) 

x ~  Q, , (g+h, -h2)F(h2)  
h2 

+ ~ D , , _ , ( H + h - H , ) P ( H + h - H ~ )  
Ht  

x o q H , ) J  f o r .  > 1, 

D,,(H+h) = 1 for n = 1. (24) 

Thus the dynamical dittraction ettects in alloys with 
homogeneous partial order can be discussed with this 
dynamical factor in the same manner as the perfectly 
ordered alloys.* 

4.2. Heterogeneous partial order 

In contrast with § 4.1, we consider here the case 
when perfectly ordered microdomains coexist with 
the disordered matrix as shown in Fig. 4. If a perfectly 
ordered domain extends from the (! + 1)th slice to the 
( l+  k)th slice parallel to the incident electron beam 
and has the geometrical structure factor Go(h), then 
the scattering amplitude is written directly from (8) as 

~ ( g + h ) = G o ( h ) F ( g + h ) D , ( H + h ) ,  (25) 

where 

D , , ( H + h ) = [ F ( H + h ) ] - ' I ~ .  ~ . . .  Y~ S,R,,_,_I 
P 

LH, H2 Hn .. l- I 

+. . . + R2R~ +. . .  

+ E E ... E S,+~_,R._,_~... R2R,[. 
H I H 2 H .  _ / - k  J 

(26) 

In the above equation, we neglect the scattering 

* The weak-phase-object approximation may not be applied to 
the transmission function of ordered alloys composed of heavy- 
elements. The higher-order approximation (22) should be applied 
in this case provided m = 1. 

~ I l e -  

disordered 

s ce [:i:::: :: I [ ::: ordered :!~::. : :.] k $1ices 

Fig. 4. A simple model with heterogeneous partial order. Perfectly 
ordered domain in the shaded region is surrounded by the 
disordered structure. 

contribution from the disordered matrix, provided 
that the perfectly ordered microdomain is fairly large 
along the incident electron beam. In this simplest 
case, the dynamical diffraction effects on HREM can 
be represented using the dynamical factor (26) in the 
same way as described for the perfectly ordered alloy. 
Recently image simulations of this type of partial 
order were performed for the image interpretation of 
short-range-ordered alloys using the column approxi- 
mation (Tanaka & Cowley, 1987). If the large ordered 
domains overlap in projection parallel to the incident 
electron beam, the dynamical diffraction effect cannot 
be evaluated with this type of dynamical factor. 

4.3. Short-range order 

In a short-range-ordered state, the pair correlation 
of atoms becomes weaker as the pair distance 
increases. The statistical correlation of the atom pairs 
is usually characterized by the so called Warren- 
Cowley short-range-order parameter a 0, which is 
given with the geometrical structure factor as 

au = C E E ~/nO 
i j 

=C~,lO(h)12 exp(27rihx), (27) 
h 

where the geometrical structure factor can be defined 
for a large artificial unit cell (Fig. 2) to give the 
statistical correlation. 

The pair correlation may be limited in a few slices 
in the electron beam direction, and so G,(h) changes 
from slice to slice. Simplification of the scattering 
amplitude (8) cannot be made in this case. However, 
the intensity of diffuse scattering can be given in terms 
of a factor which is similar to the dynamical factor 
introduced as above, assuming that the diffuse scatter- 
ing from each slice is independent and uncorrelated, 

= 12 I~*~(U+ h)l 2 IQ(h)I21S._, 

where 

I I  2 +lG.-,(h)l 2 E S._2R, 
Hi 

+. . .  +lO,(h)l 2 

x l E  E . . .  Y. S o R , - , . . . R ,  I 
H l H2 Hr,.- I 

= C'E  Y. ao exp [2"rri( hx)]D'( H + h ), 
i j 

(28) 

[ I I  2 D'(H + h) = IS._,I 2+ E S._2R, + . . .  
Hi 

+ ~. ~ . . . .  ~. S o R , _ , . . . R ,  . 
HI H2 H n -  t 

(29) 
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Thus the intensity of diffuse scattering in the short- 
range-ordered alloy is repr.esented by the multiplica- 
tion of the Fourier transforms of the short-range- 
order parameter and the factor D ' ( H  + h). This type 
of approximation was first introduced by Gj6nnes 
(1965) in his general diffuse scattering theory and 
developed extensively by Fisher (1965), and Cowley 
and his colleagues (Cowley & Pogany, 1968; Cowley 
& Murray, 1968; Cowley & Fields, 1979). 

5. Evaluation of dynamical factor 

We evaluate the dynamical factor for perfectly 
ordered C u 3 P d  as  a function of crystal thickness and 
reciprocal-lattice vector assuming the use of a 1 MV 
electron microscope. For the evaluation using (14) 
and (16), we must know the scattering amplitude of 
the transmitted beam and the fundamental reflections 
as a function of crystal thickness. We assume here 
disordered f.c.c. Cu3Pd in the evaluation. In Fig. 5, 
the absolute value of the dynamical factor ID°(u)l is 
shown in reciprocal space for the crystal thickness 
t = 0 . 7 4 - 1 6 . 7 n m .  It is interesting to note that the 
dynamical factor does not change much with the 
reciprocal-lattice vector, but it increases rapidly with 

the crystal thickness. In the crystal thickness range 
shown here, the superlattice reflections with higher 
indices tend to be excited more strongly. 

In the evaluation of the dynamical factor in Fig. 
5, we assumed that the scattering amplitudes of the 
transmitted beam and the fundamental reflections are 
not affected by the scattering from and into the super- 
lattice reflections. In order to investigate validity of 
the above assumption, we compared the scattering 
amplitude of the disordered structure with that of a 
simple ordered structure of the L12 type. In Fig. 6, 
the amplitudes of the transmitted beam and the 
fundamental reflection 200 were calculated as a func- 
tion of crystal thickness. In a crystal thicker than 
8 nm, the scattering amplitudes from the disordered 
f.c.c, and LI2 type structures differ considerably from 
each other. Hence if we investigate the dynamical 
diffraction effects on HREM of a long-period anti- 
phase structure which is based on some simple 
ordered structure such as the L12 type, we must use 
the scattering amplitudes of the transmitted beam and 
the fundamental reflections calculated from the L12 
type ordered structure instead of the disordered f.c.c. 
structure for evaluating the dynamical factor in crys- 
tals thicker than 10 nm. 

I D(u)  I 

1 0 0 ~  

000 ~ 2 2 0  

t m 0 .74  nm 
200 

I D ( u ) I  

100[ 

00( 20 

t = 3 .33  nm 

200 

I00 ID (u )  l I D ( u ) l  __ 

t = 6."6 nm ~ t -- 9 .99  nm 

200 200 

ID (u )  I I D ( u ) l  A 

ooo ooo  f , , o  
t = 13.3  n " ~ J ~  t = 16.7 nm 

200 200 

Fig. 5. Absolute value of the dynamical factor for Cu3Pd assuming 
the use of a 1 MV electron microscope. 

6. Discussion 

Finally we discuss the conditions which were used to 
introduce the dynamical factor D(h). The condition 
(7) for the geometrically defined structure factor can 
be satisfied when all the atom sites of the crystal slice 
projected along the incident electron beam form a 
two-dimensional primitive lattice containing one lat- 
tice point. For ordered alloys with the basic f.c.c, and 
b.c.c, structures, the above condition is satisfied, but 
not for alloys based on the h.c.p, structure, or imper- 
fect crystals containing structural defects. In these 
cases, we cannot introduce the dynamical factor and 
no linear relationship holds between the scattering 
amplitude and the kinematical structure factor of the 
superlattice reflections. In practice, strong dynamical 
diffraction effects were observed on the scattering 

06 i ~ '  \ j f  - ~---- 

I 
0.4:- 

i 
0 . 2 ~ ,  

0 10 20 30 

Fig. 6. Amplitude of the transmitted beam and the fundamental 
reflection 200 for Cu3Pd as a function of crystal thickness. Solid 
and dotted lines are calculated values based on the disordered 
f.c.c, and L12 type ordered structures, respectively. 
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amplitude of the superlattice reflections of Au77Mg23 
and Au77Cd23 which have a two-dimensional long- 
period antiphase structure based on the h.c.p, struc- 
ture (Shindo, Hiraga, Hirabayashi, Terasaki & 
Watanabe, 1983). It was noticed that the contrast of 
the high-resolution images of these alloys changes 
sensitively with the crystal thickness. 

In deriving the equation for the dynamical factor, 
we neglected double-weak scattering (Gj6nnes, 1965; 
Spence, 1978) on the basis of condition (6), and 
assumed either the weak-phase-object approximation 
(3) or the similar approximation of higher order (23). 
These approximations can be more appropriately 
applied to alloys of which the constituent atoms have 
similar atomic scattering factors. We also note that 
the approximation holds to greater thickness for elec- 
tron microscopy with higher accelerating voltages, 
because the interaction constant becomes smaller. In 
the limiting case, when a thin film of ordered alloy 
composed of elements with similar atomic numbers 
is examined with a high-voltage electron microscope, 
the dynamical factor tends to take a constant value 
for the superlattice reflections which contribute to the 
high-resolution images; so kinematical interpretation 
in HREM may be possible. It should be noted that 
the above argument can be applied to not only such 
simple ordered structures as discussed here but also 
complicated ones such as two-dimensional long- 
period antiphase structures which satisfy the condi- 
tions (6) and (7). This is because the dynamical factor 
does not directly depend on the ordered atomic 
arrangements. 

The authors wish to thank Dr K. Hiraga for invalu- 
able discussions. They also thank Dr T. B. Williams 
for useful comments on the manuscript. 
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Abstract 

The refraction effect associated with an off-Bragg 
diffracted beam in high-energy transmission electron 
diffraction is analysed. It is found that the wave 

vectors of Bloch-wave components of a beam associ- 
ated with a finite excitation error are significantly 
shortened or lengthened as a consequence of dynamic 
scattering, with the direction of change being 
determined by the sign of the excitation error. By 
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